Transcription - Definition, Types and Function | Biology Dictionary (2023)

Transcription Definition

Transcription refers to the first step of gene expression where an RNA polymer is created from a DNA template. This reaction is catalyzed by enzymes called RNA polymerases and the RNA polymer is antiparallel and complementary to the DNA template. The stretch of DNA that codes for an RNA transcript is called a transcription unit and could contain more than one gene.

These RNA transcripts can either be used as messengers to drive the synthesis of proteins or be involved in a number of different cellular processes. These functional or non-coding RNA could be transfer RNA (tRNA), ribosomal RNA (rRNA), or direct gene regulation through RNA interference (RNAi) and the formation of heterochromatin.

Function of Transcription

Life on earth is said to have begun from self-replicating RNA since it is the only class of molecules capable of both catalysis and carrying genetic information. With evolution, proteins took over catalysis because they are capable of a greater variety of sequences and structures. Additionally, the bonds on the sugar phosphate backbone of RNA are vulnerable to even mild changes in pH and can undergo alkaline hydrolysis. Therefore, DNA emerged as the preferred molecule for carrying genetic information since it is more stable and resistant to degradation. Transcription maintains the link between these two molecules and allows cells to use a stable nucleic acid as the genetic material while retaining most of their protein synthesis machinery.

In addition, separating DNA from the site for protein synthesis also protects genetic material from the biochemical and biophysical stresses of complex, multilayered processes. Small errors in the RNA transcript can be overcome since the RNA molecule has a short half-life, but changes to the DNA become heritable mutations. In addition, transcription adds another layer for intricate gene regulation, especially in species with large genomes that require minute adjustments in metabolism.

In eukaryotes, transcription also plays an important role in transferring the information from DNA to the cytoplasm because the nuclear pore is too small to allow ribosomes, proteins or chromosomes to pass through. While the nuclear pore has a diameter of about 5-10 nm, ribosomes are between 25-30 nm in size, many proteins are wider than 10 nm and fully condensed chromosomes can be over 2000 nm in size. Therefore, the primary machinery for protein synthesis cannot enter the nucleus and stretches of DNA cannot exit the nucleus.

Mechanism of Transcription

Transcription creates a single stranded RNA molecule from double stranded DNA. Therefore, only the information in one of the strands is transferred into the nucleotide sequence of RNA. One strand of DNA is called the coding strand and the other is the template strand. Transcription machinery interacts with the template strand to produce an mRNA whose sequence resembles the coding strand. Other names for the template strand include antisense strand and master strand.

(Video) What is Transcription (biology)?, Explain Transcription (biology), Define Transcription (biology)

Two different genes on the same DNA molecule can have coding sequences on different strands.

Transcriptional activity is particularly high in the G1 and G2 phases of the cell cycle when the cell is either recovering from mitosis or preparing for the dramatic events of the next cycle of cell division.

Transcription Initiation

Transcription begins with the binding of an RNAP in the presence of general transcription factors to the promoter region upstream of the transcription start site on the DNA. Prokaryotic RNAP binds with a sigma factor, while eukaryotic RNA polymerases can interact with a number of transcription factors as well as activator and repressor proteins. Initially, after the binding of RNAP to the promoter region, the DNA remains in a double-stranded form. This is called a ‘closed complex’ between DNA and RNAP. Thereafter, RNAP along with transcription factors unwinds a segment of the DNA and interacts with the exposed nucleotides in an open complex creating a ‘transcription bubble’. RNAP then cruises along the DNA scanning for the transcription start site inside the bubble. Once the start site is located, the first two nucleotides of the transcript are bonded to each other.

Escape from Promoter

After the first few nucleotides are added to the putative RNA transcript, RNAP enters a critical, unstable phase. It can either continue towards productive initiation, or pull DNA towards itself, creating scrunched open DNA inside the polymerase. If RNAP rewinds the downstream portion of the DNA, the putative RNA transcript is released because the DNA-RNAP complex reverts to its initial open configuration. This is called abortive initiation.

However, if the upstream portion of DNA is rewound and ejected from the enzyme, RNAP moves ahead. Its interaction with the promoter region is broken and the RNA transcript reaches a length of 14-15 nucleotides. This is called escape from the promoter and is accompanied by changes to protein-protein and protein-DNA interactions. Some transcription factors are released and transcription moves towards the elongation phase.

(Video) Transcription and Translation: From DNA to Protein

Transcription Elongation

Once a short RNA oligonucleotide of more than 15 bases is formed, RNAP proceeds along the template DNA strand. The transcript is identical to the coding strand, except that the nucleotide backbone has ribose sugar instead of deoxyribose, and adenine base pairs with uracil, instead of thymine. RNAP can catalyze the formation of a phosphodiester bond between the fifth carbon atom of an incoming nucleotide and the third carbon atom of the last nucleotide in the existing transcript.

Since the RNA molecule has a free phosphate attached to the fifth carbon on the first nucleotide and a free hydroxyl group on the third carbon of the last nucleotide, RNA is said to be transcribed in a 5′ to 3′ direction.

Transcription Termination

Unlike DNA replication, where the DNA polymerase continues to add nucleotides till it reaches the end of the molecule, transcription has to be terminated at a particular location for effective gene regulation and expression. Prokaryotic transcription termination can occur through the formation of a double-stranded region within the RNA or through the action of a protein called Rho.

The first method involves the transcription of a G:C rich region followed by a string of uracils that form weak hydrogen bonds with template DNA. The G:C rich region can loop over itself to form a hairpin-like structure stalling the RNAP and transcription machinery. This, combined with the weaker bonds between uracil and the template DNA can prise the RNA away from the transcription machinery and lead to termination. This process also involves a protein called NusA.

Rho-dependent transcription termination involves the binding of Rho protein to a sequence on the transcribed RNA. This sequence, which is downstream from translation stop codons, allows Rho to bind to RNA and cruise along the transcript in an ATP-dependent manner. When it encounters a stalled RNAP, it binds to the enzyme and causes the transcript and its associated machinery to dissociate from the DNA.

Eukaryotic transcription termination is much less understood, and most of the work has focussed on the mechanisms of RNAP II. Transcription termination in eukaryotes is also coupled with post-transcriptional modifications and processing before the mature RNA is exported to the cytoplasm.

(Video) Transcription Meaning

Types of RNA Transcripts

Traditionally, three types of RNA transcripts were known – messenger RNA (mRNA), tRNA and rRNA – and all three are intimately associated with protein synthesis . While mRNA determines amino acid sequence, tRNA and rRNA are crucial for the mechanism of translating the mRNA code.

mRNA polymerization from DNA containing protein coding genes is catalyzed by RNA polymerase II. Occasionally, proteins that are used together are coded as a single unit, in one long mRNA molecule and this is particularly common among prokaryotes. DNA sequences upstream of the coding sequence contain docking sites for the transcription machinery as well as regulatory factors that modulate the timing and quantity of transcriptional activity. mRNA is then modified and processed to give rise to the final transcript used for translation.

rRNA constitutes nearly fifty percent of the RNA of a cell and is transcribed by RNA polymerase I in specialized regions of the nucleus called the nucleolus. Nucleoli appear as dense spherical structures around the loci that code for rRNA. Prokaryotic rRNA is of three types and eukaryotic ribosomes are made of four types of rRNA with the largest one containing over 5000 nucleotides. These RNA molecules determine the three-dimensional structure of ribosomes.

RNA polymerase III catalyzes the transcription of tRNA precursors in the nucleus. Promoter sequences controlling the expression of tRNA genes can be intragenic, located inside the coding sequence of the gene. tRNA precursors undergo extensive modifications including splicing. Prokaryotic tRNAs retain their catalytic activity and can self-splice, whereas eukaryotic post-transcriptional modification is carried out by special endonuclease enzymes. These endonucleases recognize specific structural motifs within the tRNA that target the sequence for splicing.

In addition to these three types of RNA, the cell contains a number of smaller RNA involved in various cellular activities. These include gene regulation (mediated by micro RNA and sequences in the 5′ untranslated regions of mRNA transcripts), post-transcriptional modification (small nuclear RNA, small nucleolar RNA), genome defense (Piwi-interacting RNA and CRISPR) and the maintenance of genomic structure (telomeres and RNA transcripts that silence X-chromosomes).

Differences between Prokaryotic and Eukaryotic Transcription

The obvious difference between prokaryotic and eukaryotic transcription is the presence of a nuclear membrane in eukaryotes. Eukaryotic RNA transcripts need to be exported from the nucleus, whereas prokaryotes conduct coupled transcription and translation in the cytoplasm. This is possible because the prokaryotic transcript does not undergo extensive modification and prokaryotes do not need transcription factors for initiation. Therefore, the transcription machinery is simpler and can simultaneously accommodate the enzymes of translation.

Prokaryotes also have only one RNA polymerase to catalyze all the transcription reactions of the cell and a single RNA transcript can direct the synthesis of multiple proteins. These mRNA are called polycistronic mRNA. Often, all the genes involved in one biochemical pathway are transcribed and translated together, allowing the entire pathway to be regulated as a single unit. In eukaryotes, polycistronic mRNA can be found in chloroplasts.

  • Monocistronic mRNA – mRNA transcript that codes for a single protein.
  • Transposons – Small segments of DNA that can move around the genome, inserting themselves into loci far removed from their original site, often involving an RNA intermediate.
  • hnRNA – Heterogenous nuclear RNA are considered the original products of transcription and consist mostly of mRNA precursors.
  • Poly-A polymerase – Enzyme that adds a stretch of adenine nucleotides to the end of a primary transcript.

Quiz

1. Which of these properties makes DNA a more stable genetic material?
A. The hydrogen bonds between the bases are stronger
B. DNA is longer than RNA
C. Presence of thymine bases
D. Resistance to degradation through alkaline hydrolysis

(Video) Transcription and Translation - Protein Synthesis From DNA - Biology

Answer to Question #1

D is correct. The sugar backbone of DNA contains deoxyribose, which makes it more resistant to degradation through alkaline hydrolysis. The hydrogen bonds are not particularly stronger in DNA compared to RNA, in spite of the changes in base compositions.

2. What is the size of a nuclear pore in eukaryotes?
A. Less than 10 nm
B. More than 10 nm
C. Over 2000 nm
D. 25-30 nm

Answer to Question #2

A is correct. Nuclear pores are between 5-10 nm in size. Many proteins are larger than 10 nm, ribosomes are between 25-30 nm in size and fully condensed chromosomes are larger than 2000 nm. Nuclear pores act as effective sieves that control the movement of macromolecules into and out of the nucleus.

3. Which of these is NOT a feature of prokaryotic gene expression?
A. Coupled transcription and translation
B. Extensive post-transcriptional modification of the RNA transcript
C. Sigma factor for transcription initiation
D. None of the above

(Video) Protein Synthesis (Updated)

Answer to Question #3

B is correct. The absence of a nuclear envelope allows prokaryotic transcription and translation to be coupled and transcription is initiated by sigma factors. However, unlike eukaryotic gene expression, the RNA transcript in prokaryotes has fewer introns and is not extensively modified.

FAQs

What is transcription and its types? ›

Types of Transcriptions

The types of transcription are mainly categorized into three types – verbatim, edited and intelligent transcription. All these transcriptions can be used for audio or video files only the process could be different, depending upon the requirements and resource availability.

What are the 5 transcription factors? ›

The most common GTFs are TFIIA, TFIIB, TFIID (see also TATA binding protein), TFIIE, TFIIF, and TFIIH. The preinitiation complex binds to promoter regions of DNA upstream to the gene that they regulate.

What are the 4 products of transcription? ›

The product of transcription is RNA, which can be encountered in the form mRNA, tRNA or rRNA while the product of translation is a polypeptide amino acid chain, which forms a protein.
...
How is Translation Different from Transcription?
TranscriptionTranslation
TemplateDNAmRNA
End ProductRNAProtein
4 more rows
Mar 1, 2022

What is the function of a transcript? ›

The goal of transcription is to make a RNA copy of a gene's DNA sequence. For a protein-coding gene, the RNA copy, or transcript, carries the information needed to build a polypeptide (protein or protein subunit).

What are the 2 types of transcription? ›

Phonetic and orthographic transcription

There are two main types of linguistic transcription. Phonetic transcription focuses on phonetic and phonological properties of spoken language.

What are the basic rules of transcription? ›

Guidelines for Transcriptions
  • Transcripts should be at least 99% accurate.
  • Grammar and punctuation are important for providing maximum clarity.
  • Speaker identification helps users identify who is speaking.
  • Essential to communicate non-speech sounds.
  • Transcribe content as close to verbatim as possible.
Aug 21, 2018

Where does transcription occur? ›

The process of Transcription takes place in the cytoplasm in prokaryotes and in nucleus in eukaryotes. It uses DNA as a template to make an RNA (mRNA) molecule. During transcription, a strand of mRNA is made that is complementary to a strand of DNA .

What enzyme is involved in transcription? ›

The enzyme RNA polymerase transcribes DNA. This enzyme initiates transcription, joins the RNA nucleotides together, and terminates transcription. To initiate transcription in bacteria, a variety of proteins called sigma factors bind to RNA polymerases.

What are the 4 steps of transcription in order? ›

The major steps of transcription are initiation, promoter clearance, elongation, and termination.

What are the elements of transcription? ›

Transcription takes place in three steps: initiation, elongation, and termination. The steps are illustrated in Figure 2. Figure 2. Transcription occurs in the three steps—initiation, elongation, and termination—all shown here.

What are the main functions of transcription factors? ›

Transcription factors are proteins involved in the process of converting, or transcribing, DNA into RNA. Transcription factors include a wide number of proteins, excluding RNA polymerase, that initiate and regulate the transcription of genes.

How many transcription factors are there? ›

Approximately 1,500 transcription factors (TFs) are encoded in the mammalian genome1 and constitute the second largest gene family, with the immunoglobulin superfamily being the largest.

How many different transcription factors are there? ›

According to recent data, the human genome encodes about 1500 regulatory sequence-specific DNA-binding factors (transcription factors, TFs) [7–9]. TFs constitute a large functional family of proteins directly regulating the activity of genes.

What is a definition transcript? ›

tran·​script ˈtran(t)-ˌskript. : a written, printed, or typed copy. especially : a usually typed copy of dictated or recorded material. : an official or legal and often published copy. a court reporter's transcript.

What is the function of a transcript quizlet? ›

Purpose: The purpose of DNA replication to make an exact copy of the cells DNA. The purpose of Transcription is to change DNA into MRNA, and the purpose of translation is to produce proteins from mRNA and tRNA.

How do you structure transcription? ›

Starting to create the interview transcription
  1. Step 1: Listen to the whole recording before you transcribe. ...
  2. Step 2: Transcribe a first rough draft. ...
  3. Step 3: Revisit the transcript and edit. ...
  4. Step 4: Format it to your needs.

How do you transcribe correctly? ›

Basic Transcription Guidelines
  1. Accuracy. Only type the words that are spoken in the audio file. ...
  2. US English. Use proper US English capitalization, punctuation and spelling. ...
  3. Do Not Paraphrase. ...
  4. Do Not Add Additional Information. ...
  5. “Clean Up” Non-Verbatim Jobs. ...
  6. Verbatim Work Should Be Truly Verbatim.
Feb 21, 2021

How do you transcribe? ›

How to transcribe
  1. Listen to the entire audio recording before beginning to write. ...
  2. Listen to an entire sentence before transcribing it. ...
  3. Edit the completed transcription, looking for mistakes and bad grammar. ...
  4. Learn the correct touch-typing technique to maximise speed, accuracy and comfort.

How many strands of DNA are used for transcription? ›

DNA is double-stranded, but only one strand serves as a template for transcription at any given time. This template strand is called the noncoding strand. The nontemplate strand is referred to as the coding strand because its sequence will be the same as that of the new RNA molecule.

What happens after transcription? ›

After the transcription of DNA to mRNA is complete, translation — or the reading of these mRNAs to make proteins — begins.

What is transcription process? ›

What is the process of transcription? Transcription is the process in which a DNA sequence is transcribed into an RNA molecule with the help of enzyme RNA polymerase. One of the DNA strands acts as a template to make a complementary RNA strand.

What causes transcription of a gene to end? ›

Transcription termination occurs when a transcribing RNA polymerase releases the DNA template and the nascent RNA. Termination is required for preventing the inappropriate transcription of downstream genes, and for recycling of the polymerase.

What is the product of transcription? ›

Answer and Explanation: The product of transcription is: D) RNA. Transcription is the process whereby RNA polymerase makes a single stranded RNA copy complementary to its...

What are the 3 major types of RNA? ›

Three main types of RNA are involved in protein synthesis. They are messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). rRNA forms ribosomes, which are essential in protein synthesis. A ribosome contains a large and small ribosomal subunit.

What are the two transcription factors? ›

Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.

What are the main functions of transcription and translation? ›

The purpose of transcription is to make RNA copies of individual genes that the cell can use in the biochemistry. The purpose of translation is to synthesize proteins, which are used for millions of cellular functions. Translation is the synthesis of a protein from an mRNA template.

What is the function of translation in biology? ›

In biology, the process by which a cell makes proteins using the genetic information carried in messenger RNA (mRNA). The mRNA is made by copying DNA, and the information it carries tells the cell how to link amino acids together to form proteins.

What is cell type specific transcription? ›

Gene regulatory programs in distinct cell types are maintained in large part through the cell-type–specific binding of transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence preferences of cofactors, and the local cell-dependent chromatin context.

Do all cells have all transcription factors? ›

Some transcription factors are general ones that are found in virtually all cells of an organism. Other transcription factors are specific for certain types of cells and stages of development.

What is a promoter in transcription? ›

A promoter, as related to genomics, is a region of DNA upstream of a gene where relevant proteins (such as RNA polymerase and transcription factors) bind to initiate transcription of that gene. The resulting transcription produces an RNA molecule (such as mRNA).

Is transcription factor a gene? ›

Transcription factor (TF) genes encode DNA-binding proteins. In all organisms, TFs play central roles in transcription by regulating gene expression. TFs are involved in a variety of biological processes, such as development and cell cycle control. TFs comprise one of the largest known groups of genes.

What controls transcription factors? ›

The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors.

What are the 3 transcription factors? ›

III. Transcription factors family
  • 3.1 Helix-turn-helix proteins. ...
  • 3.2 Zinc finger proteins. ...
  • 3.3 Leucine zipper proteins. ...
  • 3.4 Helix-loop-helix proteins.

How is gene transcription regulated? ›

First, transcription is controlled by limiting the amount of mRNA that is produced from a particular gene. The second level of control is through post-transcriptional events that regulate the translation of mRNA into proteins.

What is in a transcription? ›

In biology, the process by which a cell makes an RNA copy of a piece of DNA. This RNA copy, called messenger RNA (mRNA), carries the genetic information needed to make proteins in a cell. It carries the information from the DNA in the nucleus of the cell to the cytoplasm, where proteins are made.

What are the 3 types of RNA that transcription makes? ›

They are messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA).

What are the three parts of transcription? ›

Transcription occurs in the three steps—initiation, elongation, and termination—all shown here. Transcription takes place in three steps: initiation, elongation, and termination.

What are the 3 RNA types and their functions? ›

mRNA (messenger RNA): it provides the template for protein synthesis during translation. tRNA (transfer RNA): it brings amino acids and reads the genetic code during translation. rRNA (ribosomal RNA): it plays a structural and catalytic role during translation.

Where are the 3 types of RNA and their functions? ›

Messenger RNA (mRNA) molecules carry the coding sequences for protein synthesis and are called transcripts; ribosomal RNA (rRNA) molecules form the core of a cell's ribosomes (the structures in which protein synthesis takes place); and transfer RNA (tRNA) molecules carry amino acids to the ribosomes during protein ...

What is the function of mRNA? ›

The role of mRNA is to carry protein information from the DNA in a cell's nucleus to the cell's cytoplasm (watery interior), where the protein-making machinery reads the mRNA sequence and translates each three-base codon into its corresponding amino acid in a growing protein chain.

What is required for transcription? ›

Transcription requires the DNA double helix to partially unwind such that one strand can be used as the template for RNA synthesis. The region of unwinding is called a transcription bubble.

What is transcription vs translation? ›

The process by which DNA is copied to RNA is called transcription, and that by which RNA is used to produce proteins is called translation.

Videos

1. Cell Biology | DNA Transcription 🧬
(Ninja Nerd)
2. Transcription Process | Gene Expression | From DNA To mRNA | Class 12 Biology
(ALI ACADEMY BIOLOGY LECTURES)
3. mRNA, tRNA, and rRNA function | Types of RNA
(2 Minute Classroom)
4. Transcription (DNA to mRNA)
(Arman Hossain)
5. Regulation of Gene Expression: Operons, Epigenetics, and Transcription Factors
(Professor Dave Explains)
6. From DNA to protein - 3D
(yourgenome)
Top Articles
Latest Posts
Article information

Author: Jonah Leffler

Last Updated: 02/16/2023

Views: 6630

Rating: 4.4 / 5 (65 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.